Ads

Connecting Devices in Multimedia

Among the many hardware – computers, monitors, disk drives, video projectors, light valves, video projectors, players, VCRs, mixers, sound speakers there are enough wires which connect these devices. The data transfer speed the connecting devices provide will determine the faster delivery of the multimedia content.

The most popularly used connecting devices are:

• SCSI
• USB
• MCI
• IDE

SCSI

SCSI (Small Computer System Interface) is a set of standards for physically connecting and transferring data between computers and peripheral devices. The SCSI standards define commands, protocols, electrical and optical interfaces. SCSI is most commonly used for hard disks and tape drives, but it can connect a wide range of other devices, including scanners, and optical drives (CD, DVD, etc.). SCSI is most commonly pronounced "scuzzy".
Since its standardization in 1986, SCSI has been commonly used in the Apple Macintosh and Sun Microsystems computer lines and PC server systems. SCSI has never been popular in the low-priced IBM PC world, owing to the lower cost and adequate performance of its ATA hard disk standard. SCSI drives and even SCSI RAIDs became common in PC workstations for video or audio production, but the appearance of large cheap SATA drives means that SATA is rapidly taking over this market. Currently, SCSI is popular on high-performance workstations and servers. RAIDs on servers almost always use SCSI hard disks, though a number of manufacturers offer SATA-based RAID systems as a cheaper option. Desktop computers and notebooks more typically use the ATA/IDE or the newer SATA interfaces for hard disks, and USB and FireWire connections for external devices.

USB

Universal Serial Bus (USB) is a serial bus standard to interface devices. A major component in the legacy-free PC, USB was designed to allow peripherals to be connected using a single standardized interface socket and to improve plug-and-play capabilities by allowing devices to be connected and disconnected without rebooting the computer (hot swapping). Other convenient features include providing power to low-consumption devices without the need for an external power supply and allowing many devices to be used without requiring manufacturer specific, individual device drivers to be installed.
USB is intended to help retire all legacy varieties of serial and parallel ports. USB can connect computer peripherals such as mouse devices, keyboards, PDAs, game pads and joysticks, scanners, digital cameras, printers, personal media players, and flash drives. For many of those devices USB has become the standard connection method.
USB is also used extensively to connect non-networked printers; USB simplifies connecting several printers to one computer. USB was originally designed for personal computers, but it has become commonplace on other devices such as PDAs and video game consoles.

MCI

The Media Control Interface, MCI in short, is an aging API for controlling multimedia peripherals connected to a Microsoft Windows or OS/2 computer. MCI makes it very simple to write a program which can play a wide variety of media files and even to record sound by just passing commands as strings. It uses relations described in Windows registries or in the [MCI] section of the file SYSTEM.INI.
The MCI interface is a high-level API developed by Microsoft and IBM for controlling multimedia devices, such as CD-ROM players and audio controllers. The advantage is that MCI commands can be transmitted both from the programming language and from the scripting language (open script, lingo). For a number of years, the MCI interface has been phased out in favor of the DirectX APIs.

The Media Control Interface consists of 4 parts:

• AVI Video
• CD Audio
• Sequencer
• Wave Audio

Each of these so-called MCI devices can play a certain type of files e.g. AVI Video plays avi files, CDAudio plays cd tracks among others. Other MCI devices have also been made available over time.

IDE

Usually storage devices connect to the computer through an Integrated Drive Electronics (IDE) interface. Essentially, an IDE interface is a standard way for a storage device to connect to a computer. IDE is actually not the true technical name for the interface standard. The original name, AT Attachment (ATA), signified that the interface was initially developed for the IBM AT computer.
IDE was created as a way to standardize the use of hard drives in computers. The basic concept behind IDE is that the hard drive and the controller should be combined. The controller is a small circuit board with chips that provide guidance as to exactly how the hard drive stores and accesses data. Most controllers also include some memory that acts as a buffer to enhance hard drive performance.

Before IDE, controllers and hard drives were separate and often proprietary. In other words, a controller from one manufacturer might not work with a hard drive from another manufacturer. The distance between the controller and the hard drive could result in poor signal quality and affect performance. Obviously, this caused much frustration for computer users.

IDE devices use a ribbon cable to connect to each other. Ribbon cables have all of the wires laid flat next to each other instead of bunched or wrapped together in a bundle.

IDE ribbon cables have either 40 or 80 wires. There is a connector at each end of the cable and another one about two-thirds of the distance from the motherboard connector. This cable cannot exceed 18 inches (46 cm) in total length (12 inches from first to second connector, and 6 inches from second to third) to maintain signal integrity. The three connectors are typically different colors and attach to specific items:

• The blue connector attaches to the motherboard.
• The black connector attaches to the primary (master) drive.
• The grey connector attaches to the secondary (slave) drive.

Enhanced IDE (EIDE) — an extension to the original ATA standard again developed by Western Digital — allowed the support of drives having a storage capacity larger than 504 MiBs (528 MB), up to 7.8 GiBs (8.4 GB). Although these new names originated in branding convention and not as an official standard, the terms IDE and EIDE often appear as if interchangeable with ATA. This may be attributed to the two technologies being introduced with the same consumable devices — these "new" ATA hard drives.

With the introduction of Serial ATA around 2003, conventional ATA was retroactively renamed to Parallel ATA (P-ATA), referring to the method in which data travels over wires in this interface.


     


Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.

buttons=(Accept !) days=(20)

Our website uses cookies to enhance your experience. Learn More
Accept !